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[1] Many current metrics of drought are derived solely
from analyses of climate variables such as precipitation and
temperature. Drought is clearly a consequence of climate
anomalies, as well as of human water use practices, but many
impacts to society are more directly related to hydrologic
conditions resulting from these two factors. Modern
hydrology models can provide a valuable counterpart to
existing climate-based drought indices by simulating
hydrologic variables such as land surface runoff. We
contrast the behavior of a standardized runoff index (SRI)
with that of the well-known standardized precipitation index
(SPI) during drought events in a snowmelt region. Although
the SRI and SPI are similar when based on long
accumulation periods, the SRI incorporates hydrologic
processes that determine seasonal lags in the influence of
climate on streamflow. As a result, on monthly to seasonal
time scales, the SRI is a useful complement to the SPI for
depicting hydrologic aspects of drought. Citation: Shukla, S.,

and A. W. Wood (2008), Use of a standardized runoff index

for characterizing hydrologic drought, Geophys. Res. Lett., 35,

L02405, doi:10.1029/2007GL032487.

1. Motivation

[2] Drought is a multi-faceted phenomenon that occurs
across a range of temporal and spatial scales and is
experienced across a range of societal sectors that are
dependent on climate and water resources [Wilhite, 2000].
Many indicators used to describe drought are derived from
analyses of climate variables such as precipitation and
temperature. The impacts of drought are a consequence of
climate anomalies, as well as of human water use practices,
but many impacts are more directly related to the resulting
hydrologic conditions. Several drought indices attempt to
incorporate the interaction of the land surface with climate,
including, e.g., the Palmer Drought Severity Index (PDSI)
[Palmer, 1965], but the conceptual moisture accounting of
the PDSI (and related indices) represents evaporative effects
crudely and omits snow accumulation and melt entirely
[Alley, 1984]. Others, such as the Standardized Precipitation
Index (SPI) [McKee et al., 1993] are purely related to
climate. Soil moisture is also recognized as an important
indicator of drought for agriculture and other sectors. The
National Oceanic and Atmospheric Administration (NOAA)
Climate Prediction center (CPC), for example, uses a
simplified water balance model [Huang et al., 1996] to

simulate soil moisture percentiles for drought monitoring in
the United States (US). The current state-of-the-practice
drought analysis in the US, the US Drought Monitor
(USDM) [Svoboda et al., 2002], is subjectively assembled
from estimates of climate indices such as the PDSI, SPI,
streamflow percentiles, snow water equivalent (SWE)
anomalies, CPC soil moisture percentiles, and various other
minor inputs.
[3] The potential to advance the hydrologic basis for

drought monitoring now exists. The last decade has seen
the maturation of a class of macro-scale hydrology models
that incorporate sufficient physics to maintain water and
energy balances of the major components of the top 1–
2 meters of the land surface, operate at between an hourly
and daily timestep, and run at horizontal grid resolutions
that are far finer than the climate division and even county
level data sources of the USDM. Foremost among the
modeling efforts in the US is the NOAA Land Data
Assimilation Project (NLDAS) [Mitchell et al., 2004],
which has helped to promote the development and calibra-
tion of four land surface schemes over much of North
America at 1/8 degree spatial resolution.
[4] These models produce real-time modeled soil mois-

ture, SWE and runoff estimates at sub-daily time steps. We
focus here on runoff, a primary concern to water managers,
because it is closer to being a verified product from models
than soil moisture. The drought monitoring and manage-
ment community widely uses data expressed in an index
framework. We also employ an index framework to dem-
onstrate the application of modeled runoff for water cycle
analysis in the context of drought.

2. Hydrologic Modeling

[5] We use the physically based, semi-distributed macro-
scale Variable Infiltration Capacity (VIC) model [Liang et
al., 1994] to simulate the land surface water balance. Like
other NLDAS project models, VIC accounts for modulation
by vegetation of land-atmosphere moisture and energy
fluxes, and attempts to represent sub-grid variability of
vegetation, soil and terrain characteristics via sub-grid
area-specific parameter classifications and an infiltration
algorithm that involves the areal extent of soil saturation.
Soil layer depths, infiltration and base flow parameters are
adjusted during model calibration, the primary goal of
which is often to reproduce observed streamflow.
[6] The VIC model has been applied for analyzing

historical drought events for the entire U.S. [Andreadis et
al., 2005] and globally [e.g., Sheffield and Wood, 2008]. We
draw here on VIC model results from the 1/8 degree imple-
mentation for the Feather R. basin, California, described by
Wood and Schaake [2008], and on the 1=2 degree continental
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US (CONUS) implementation [Andreadis et al., 2005] that
is incorporated in the real-time University of Washington
Surface Water Monitor (see http://www.hydro.washington.
edu/forecast/monitor/). Both models use gridded NOAA
National Climatic Data Center Cooperator station precipi-
tation, temperature minima and maxima as inputs to simu-
late the water balance at a daily time step. Typical outputs
include daily surface runoff, baseflow, evaporation, soil
moisture and SWE for each grid cell. We sum daily surface
runoff and baseflow from each cell together to form, simply,
‘‘runoff’’, and temporally average runoff to form monthly
totals for each model grid cell. At large spatial scales, this
runoff differs from streamflow because it is not routed
through a channel network.

3. Standardized Runoff Index

[7] We apply the concept employed by McKee et al.
[1993] for the SPI in defining a standardized runoff index
(SRI) as the unit standard normal deviate associated with the
percentile of hydrologic runoff accumulated over a specific
duration. Different durations (e.g., 1-month, 9-month) and
different spatial aggregations of the index can be calculated
depending on source data resolution and desired application.
SPIs, for instance, are calculated by NOAA on a climate
division basis and by state agencies on a county level basis.
The procedure for calculating the SRI includes the follow-
ing steps: (1) A retrospective time series of runoff is

obtained by simulation, and a probability distribution is fit
to the sample represented by the time series values. (2) The
distribution is used to estimate the cumulative probability of
the runoff value of interest (either the current accumulation
or one from a retrospective date). (3) The cumulative
probability is converted to a standard normal deviate (with
zero mean and unit variance), which can either be calculated
from a numerical approximation to the normal cumulative
distribution function (CDF) or extracted from a table of
values for the normal CDF that is readily available in
statistics textbooks or on the World Wide Web.
[8] McKee et al. [1993] select the Gamma distribution for

fitting monthly precipitation data series, and suggest that the
procedure can be applied to other variables relevant to
drought, e.g., streamflow or reservoir contents. In pursuing
this suggestion for model-based runoff, we note that dis-
tributions other than the Gamma may be more appropriate,
depending on the runoff variable’s retrospective sample
characteristics (especially skew and kurtosis), which vary
greatly by geographic location and degree of temporal
aggregation. Figure 1, showing the distribution of areal
average 3-month total simulated runoff during March, April
and May from the years 1955–2005 for the Feather River
basin, California, makes clear that any value of runoff can
equally well be expressed in terms of its percentile (top
axis) or the standardized index (bottom axis). Here the 2
parameter log normal (LN) distribution, for example, pro-
vides a better fit at high extremes than the Gamma distri-

Figure 1. The simulated historical (1955 to 2005) distribution of 3-month runoff (areal average depth) accumulations
for March, April and May in the Feather River basin. The sample is fitted with Gamma and Log Normal (LN2)
distributions. The SRI (bottom axis) is the unit standard normal deviate associated with the percentiles of the runoff value
(top axis).
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bution whereas the Gamma distribution may perform better
for low runoff values. The 3-parameter LN and Generalized
Extreme Value distributions may have even better general
applicability for runoff over widely varying hydro-climatic
regimes. Where a satisfactory distribution fit cannot be
achieved, an alternative is to estimate percentiles empirically.
Care must be taken to negotiate the first two steps above so as
to minimize errors in estimating the probability of runoff,
particularly in arid regions where runoff may be intermittent.
Note that SRI units are non-linearly related to percentiles, so
a change in SRI from �2 to �3 equals a smaller percentile

change than an SRI change from 0 to 1. This correspondence
is common to other USDM indices, reflecting the non-linear
relationship of drought severity to the probability of a
drought event.

4. Results

[9] We illustrate differences in the behavior of the SPI
and SRI using areal averages of observed precipitation and
simulated runoff in the Feather River basin. Figure 2 shows
monthly time series of the indices for four accumulation

Figure 2. Historical time series of the SPI and SRI for 1-, 3-, 6- and 12-month accumulation periods, based on observed
precipitation and simulated runoff in the Feather River basin.
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periods (1-, 3-, 6- and 12-month) for the years 1975–1995.
The 12-month SPI and SRI are very similar due to the high
correlation between annual precipitation and runoff (r =
0.9). The differences between the indices increase as the
accumulation period decreases, with SPI to SRI correlations
dropping from 0.88 for the 12-month period to 0.82, 0.69
and 0.01 for the 6-, 3-, and 1-month period indices. For
shorter period accumulations, the SRI is less variable from
month to month than the SPI due to the detention of
moisture in snow or soil storages that regulate runoff. Figure
S1 shows the autocorrelation of 1-month runoff provided by
these storages at different times of the year.1 The 12-month
indices integrate over an entire water year, longer than most
effects of hydrologic modulation. A long integration, how-
ever, accumulates values that are well past and that may no
longer influence current land surface conditions. For exam-
ple, a large event in early 1986 causes the 12-month indices
to remain above 1.0 for 2 months after the 1- and 3-month
SRIs fall below values of �1.0, in December, 1986.
[10] The 1976–1977 and 1987–1992 California drought

events are evident in all four sets of timeseries, as is the
1995 flood year. During the drought years, the 12-month
indices are both negative, with the exception of a few
months in 1989. These results compare well qualitatively
to recorded precipitation and runoff anomalies for Sacra-
mento River basin, which contains the Feather River basin:
percentages of normal during each of the six years were,
respectively, 55, 75, 100, 75, 75, 76 for precipitation and 49,
49, 78, 49, 45, 47 for runoff [Dziegielewski et al., 1993].
During drought events, the shorter period indices attain
positive values more frequently than the 12-month indices
and the SPI recovers to above normal levels more frequently
than the SRI. In 1990–1991, the SPI describes spells of
precipitation that are insufficient to ameliorate hydrologic
drought conditions, a reality reflected in the non-recovery of
the SRI at these times. In winter 1992–1993, however, the
SPI increase corresponds to a building snowpack, and
presages a recovery from drought; whereas the SRI reflects
only current runoff and remains low until the snowmelt
period arrives. In this case, unlike the SRI, the SPI has
predictive value.
[11] The hydrologic importance of precipitation varies

greatly depending on the seasonal precipitation climatology
and the current land surface moisture state. Figure 3 shows
the 3-month SPI and SRI values for the Feather R. basin
together with daily basin areal averages of observed accu-
mulated water year precipitation and simulated soil mois-
ture, SWE and water year runoff for the drought year of
1991 and the flood year of 1995. In 1991, recorded
precipitation in March was 300 percent of average, which
is evident in the step change in accumulated precipitation,
soil moisture and runoff, increases in SWE, and return to
above normal of the 3-month SPI. The recharge of low soil
moisture, however, diminishes runoff, muting the SRI
recovery. Qualitatively, these dynamics are corroborated
by reports of Dziegielewski et al. [1993, p. 70]: ‘‘Since
the onset of drought in 1987, California has experienced at
least one month of above-normal precipitation during each
water year. . .However, these precipitation ‘bursts’ were not

adequate to overcome water shortages in most parts of the
state accumulated during the previous months of the re-
spective water years.’’
[12] A contrasting hydrologic situation is given by the

extreme precipitation events in January and March 1995,
which together caused flooding that claimed 28 lives and
led to over $220 million in damages [The Resources
Agency, 2003]. As Figure 3 shows, these storms arrived
when soil moisture was near or above normal, and drove
increases in SWE, runoff and consequently both SPI and
SRI to much above normal. Below average summer precip-
itation then caused SPI to plummet. Precipitation during
California’s relatively dry summers, however, often con-
tributes less to summer runoff than the moisture accumu-
lated in the soil and SWE during winter. In 1995, the
summer precipitation deficits were greatly overshadowed
by the discharge of stored moisture, hence runoff and the
SRI remained high through the end of the water year.
[13] Due to hydrologic delays in the form of snow and

soil moisture, the SPI may be desynchronized from re-
sponse of the land surface to those anomalies (the USDM,
partly for this reason, advises caution in interpreting short
duration SPIs) – whereas the SRI incorporates the land
surface dynamics that moderate the hydrologic response.
Snow-free regions lack the delay due to snow accumulation
(longer than soil storage delay), hence the SPI and SRI are
better correlated at short durations, despite the SRI’s atten-
uation of the precipitation signal. Figures S2 and S3 duplicate
Figures 2 and 3 for a snow-free location.

5. Operational Mapping of Runoff on Continental
Scales

[14] The land surface modeling activities noted in section
1 are capable of producing runoff and derived indices such
as the SRI on a continental scale, using multiple hydrologic
models, for both current and projected conditions (e.g.,
based on climate predictions from CPC). Figure 4, for
example, shows a real-time SRI analysis based on the 1=2
degree VIC model simulation (section 2)] for 3-month
runoff conditions as of September 2007. In general, the
locations of wet and dry conditions across the domain are
represented similarly by the SPI and SRI. The SRI is higher
than the SPI in Oklahoma and Texas due to surplus moisture
remaining from extreme summer 2007 flooding, and is
lower in the western US where the water year was much
drier than average. In California, the 3-month SPI is above
normal, in contrast to the SRI and to the 2007-09-25
USDM, which depicted all counties as being at least
‘‘Abnormally Dry’’. The recent extension of NLDAS retro-
spective simulations back to 1979 is long enough estimate
runoff distributions, despite post-dating important prior
drought events (e.g., 1976–77, the Dust Bowl). The poten-
tial value of hydrologic anomaly products that depend on
the existence of consistent historical analyses argues that the
NLDAS extension should be a stepping stone toward even
longer retrospective simulations.

6. Conclusions

[15] The foregoing examples demonstrate that modeled
runoff could provide a useful counterpart to climate-based1Auxiliary materials are available in the HTML. doi:10.1029/

2007GL032487.
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indices for drought monitoring and management. Due to the
popularity of the SPI, the multi-period SRI framework for
runoff is likely to be familiar to the drought research, moni-
toring and management communities. Whereas climate-
based indices describe the climate anomalies in isolation
from their hydrologic context, hydrologic indices directly
describe the effects of climate anomalies on current hydro-
logic conditions as governed by land surface physical pro-
cesses. One strength of a runoff-based index is that it can be
forecast, and its predictability depends not only on climate
outlooks, for which seasonal skill is generally low, but on
hydrologic initial conditions, which in some seasons largely
determine future runoff (e.g., spring snow state in the western
US). A second strength is that calibrated runoff simulations

are more widely available for real-time application than
naturalized (e.g., adjusted to remove human impairments)
streamflow observations, which precludes the use of stream-
flow in a real-time framework [e.g.,Modarres, 2007] in most
locations. Modeled runoff cannot be verified everywhere,
however, thus runoff-based indices such as the SRI reflect the
customary uncertainties associated with model outputs. Nev-
ertheless, model-based hydrologic runoff (in index form or
otherwise) shows potential to complement existing climate
indices and local hydro-climatological information (e.g.,
knowledge of when/where snow accumulation is occurring),
leading to improvements in the assessment of current and
future drought status.

Figure 3. The Feather River basin areal average water balance during two water years ((left) 1991 and (right) 1995)
compared with the 3-month SPI and SRI. Daily values of observed precipitation and simulated soil moisture, snow water
equivalent and runoff in each of the two years (dashed line) are plotted against the minimum, maximum, and quartiles of
their daily historical distribution from 1955 to 2005. The SPI and SRI have a monthly time step.
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